Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7972): 104-109, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532817

RESUMEN

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Asunto(s)
Hierro , Minerales , Agua de Mar , Hierro/análisis , Hierro/química , Hierro/metabolismo , Ligandos , Minerales/análisis , Minerales/química , Minerales/metabolismo , Ciclo del Carbono , Conjuntos de Datos como Asunto , Océano Atlántico , Agua de Mar/análisis , Agua de Mar/química , Bermudas , Factores de Tiempo , Estaciones del Año , Soluciones/química , Internacionalidad
2.
Glob Chang Biol ; 29(18): 5250-5260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409536

RESUMEN

Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2 . However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The 'biogeochemical fingerprint' of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Hierro , Dióxido de Carbono/análisis , Océanos y Mares , Fertilización
3.
mSystems ; 8(2): e0126022, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36794943

RESUMEN

Viruses can alter the abundance, evolution, and metabolism of microorganisms in the ocean, playing a key role in water column biogeochemistry and global carbon cycles. Large efforts to measure the contribution of eukaryotic microorganisms (e.g., protists) to the marine food web have been made, yet the in situ activities of the ecologically relevant viruses that infect these organisms are not well characterized. Viruses within the phylum Nucleocytoviricota ("giant viruses") are known to infect a diverse range of ecologically relevant marine protists, yet how these viruses are influenced by environmental conditions remains under-characterized. By employing metatranscriptomic analyses of in situ microbial communities along a temporal and depth-resolved gradient, we describe the diversity of giant viruses at the Southern Ocean Time Series (SOTS), a site within the subpolar Southern Ocean. Using a phylogeny-guided taxonomic assessment of detected giant virus genomes and metagenome-assembled genomes, we observed depth-dependent structuring of divergent giant virus families mirroring dynamic physicochemical gradients in the stratified euphotic zone. Analyses of transcribed metabolic genes from giant viruses suggest viral metabolic reprogramming of hosts from the surface to a 200-m depth. Lastly, using on-deck incubations reflecting a gradient of iron availability, we show that modulating iron regimes influences the activity of giant viruses in the field. Specifically, we show enhanced infection signatures of giant viruses under both iron-replete and iron-limited conditions. Collectively, these results expand our understanding of how the water column's vertical biogeography and chemical surroundings affect an important group of viruses within the Southern Ocean. IMPORTANCE The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. Here, we address this gap in our understanding by characterizing the diversity and activity of "giant" viruses within an important region in the sub-Antarctic Southern Ocean. Giant viruses are double-stranded DNA (dsDNA) viruses of the phylum Nucleocytoviricota and are known to infect a wide range of eukaryotic hosts. By employing a metatranscriptomics approach using both in situ samples and microcosm manipulations, we illuminated both the vertical biogeography and how changing iron availability affects this primarily uncultivated group of protist-infecting viruses. These results serve as a foundation for our understanding of how the open ocean water column structures the viral community, which can be used to guide models of the viral impact on marine and global biogeochemical cycling.


Asunto(s)
Virus Gigantes , Virosis , Virus , Humanos , Virus Gigantes/genética , Hierro , Océanos y Mares , Virus/genética , Agua , Eucariontes
4.
Nat Nanotechnol ; 17(12): 1342-1351, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36443601

RESUMEN

Artificial ocean fertilization (AOF) aims to safely stimulate phytoplankton growth in the ocean and enhance carbon sequestration. AOF carbon sequestration efficiency appears lower than natural ocean fertilization processes due mainly to the low bioavailability of added nutrients, along with low export rates of AOF-produced biomass to the deep ocean. Here we explore the potential application of engineered nanoparticles (ENPs) to overcome these issues. Data from 123 studies show that some ENPs may enhance phytoplankton growth at concentrations below those likely to be toxic in marine ecosystems. ENPs may also increase bloom lifetime, boost phytoplankton aggregation and carbon export, and address secondary limiting factors in AOF. Life-cycle assessment and cost analyses suggest that net CO2 capture is possible for iron, SiO2 and Al2O3 ENPs with costs of 2-5 times that of conventional AOF, whereas boosting AOF efficiency by ENPs should substantially enhance net CO2 capture and reduce these costs. Therefore, ENP-based AOF can be an important component of the mitigation strategy to limit global warming.


Asunto(s)
Dióxido de Carbono , Nanopartículas , Ecosistema , Dióxido de Silicio , Fitoplancton , Océanos y Mares , Fertilización
5.
Metallomics ; 14(7)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35641175

RESUMEN

Iron is a key micronutrient for ocean phytoplankton, and the availability of iron controls primary production and community composition in large regions of the ocean. Pennate diatoms, a phytoplankton group that responds to iron additions in low-iron areas, can have highly variable iron contents, and some groups such as Pseudo-nitzschia, are known to use ferritin to store iron for later use. We quantified and mapped the intracellular accumulation of iron by a natural population of Pseudo-nitzschia from the Fe-limited equatorial Pacific Ocean. A total of 48 h after iron addition, nearly half of the accumulated iron was localized in storage bodies adjacent to chloroplasts believed to represent ferritin. Over the subsequent 48 h, stored iron was distributed to the rest of the cell through subsequent growth and division, partially supporting the iron contents of the daughter cells. This study provides the first quantitative view into the cellular trafficking of iron in a globally relevant phytoplankton group and demonstrates the unique capabilities of synchrotron-based element imaging approaches.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Ferritinas , Hierro/metabolismo , Océano Pacífico , Fitoplancton/metabolismo
6.
ISME Commun ; 2(1): 57, 2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37938259

RESUMEN

In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.

7.
ISME Commun ; 2(1): 54, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938659

RESUMEN

The trace metal iron (Fe) controls the diversity and activity of phytoplankton across the surface oceans, a paradigm established through decades of in situ and mesocosm experimental studies. Despite widespread Fe-limitation within high-nutrient, low chlorophyll (HNLC) waters, significant contributions of the cyanobacterium Synechococcus to the phytoplankton stock can be found. Correlations among differing strains of Synechococcus across different Fe-regimes have suggested the existence of Fe-adapted ecotypes. However, experimental evidence of high- versus low-Fe adapted strains of Synechococcus is lacking, and so we investigated the transcriptional responses of microbial communities inhabiting the HNLC, sub-Antarctic region of the Southern Ocean during the Spring of 2018. Analysis of metatranscriptomes generated from on-deck incubation experiments reflecting a gradient of Fe-availabilities reveal transcriptomic signatures indicative of co-occurring Synechococcus ecotypes adapted to differing Fe-regimes. Functional analyses comparing low-Fe and high-Fe conditions point to various Fe-acquisition mechanisms that may allow persistence of low-Fe adapted Synechococcus under Fe-limitation. Comparison of in situ surface conditions to the Fe-titrations indicate ecological relevance of these mechanisms as well as persistence of both putative ecotypes within this region. This Fe-titration approach, combined with transcriptomics, highlights the short-term responses of the in situ phytoplankton community to Fe-availability that are often overlooked by examining genomic content or bulk physiological responses alone. These findings expand our knowledge about how phytoplankton in HNLC Southern Ocean waters adapt and respond to changing Fe supply.

8.
Global Biogeochem Cycles ; 36(11): e2022GB007382, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37034112

RESUMEN

Although iron and light are understood to regulate the Southern Ocean biological carbon pump, observations have also indicated a possible role for manganese. Low concentrations in Southern Ocean surface waters suggest manganese limitation is possible, but its spatial extent remains poorly constrained and direct manganese limitation of the marine carbon cycle has been neglected by ocean models. Here, using available observations, we develop a new global biogeochemical model and find that phytoplankton in over half of the Southern Ocean cannot attain maximal growth rates because of manganese deficiency. Manganese limitation is most extensive in austral spring and depends on phytoplankton traits related to the size of photosynthetic antennae and the inhibition of manganese uptake by high zinc concentrations in Antarctic waters. Importantly, manganese limitation expands under the increased iron supply of past glacial periods, reducing the response of the biological carbon pump. Overall, these model experiments describe a mosaic of controls on Southern Ocean productivity that emerge from the interplay of light, iron, manganese and zinc, shaping the evolution of Antarctic phytoplankton since the opening of the Drake Passage.

9.
Global Biogeochem Cycles ; 35(8): e2021GB006979, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35865367

RESUMEN

We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (kin-app) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high-affinity Fe uptake system, so data were screened, yielding 560 single cell k in-app values from 31 low-Fe stations. We normalized k in-app to cell surface area (S.A.) to account for cell-size differences. The resulting bioavailability proxy (k in-app/S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe-siderophore complexes and often approaches that of highly available inorganic Fe'. Station averaged k in-app/S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency of k in-app/S.A. among stations (ca. five-fold variation), we computed a grand-averaged dFe availability, which upon normalization to cell carbon (C) yields k in-app/C of 42,200 ± 11,000 L mol C-1 d-1. We utilize k in-app/C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability of k in-app/C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe-limited Equatorial Pacific.

10.
Nat Commun ; 10(1): 4960, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673108

RESUMEN

Despite recent advances in observational data coverage, quantitative constraints on how different physical and biogeochemical processes shape dissolved iron distributions remain elusive, lowering confidence in future projections for iron-limited regions. Here we show that dissolved iron is cycled rapidly in Pacific mode and intermediate water and accumulates at a rate controlled by the strongly opposing fluxes of regeneration and scavenging. Combining new data sets within a watermass framework shows that the multidecadal dissolved iron accumulation is much lower than expected from a meta-analysis of iron regeneration fluxes. This mismatch can only be reconciled by invoking significant rates of iron removal  to balance iron regeneration, which imply generation of authigenic particulate iron pools. Consequently, rapid internal cycling of iron, rather than its physical transport, is the main control on observed iron stocks within intermediate waters globally and upper ocean iron limitation will be strongly sensitive to subtle changes to the internal cycling balance.

11.
Proc Natl Acad Sci U S A ; 115(52): E12275-E12284, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30538208

RESUMEN

Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms, Pseudo-nitzschia were favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile, Chaetoceros and Thalassiosira gene expression aligned with vacuolar storage mechanisms. Pseudo-nitzschia also showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.


Asunto(s)
Diatomeas/metabolismo , Hierro/metabolismo , Diatomeas/clasificación , Diatomeas/crecimiento & desarrollo , Ecosistema , Ferritinas/metabolismo , Fitoplancton/crecimiento & desarrollo , Fitoplancton/metabolismo
12.
Nat Commun ; 9(1): 4868, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451846

RESUMEN

Variation in ocean C:N:P of particulate organic matter (POM) has led to competing hypotheses for the underlying drivers. Each hypothesis predicts C:N:P equally well due to regional co-variance in environmental conditions and biodiversity. The Indian Ocean offers a unique positive temperature and nutrient supply relationship to test these hypotheses. Here we show how elemental concentrations and ratios vary over daily and regional scales. POM concentrations were lowest in the southern gyre, elevated across the equator, and peaked in the Bay of Bengal. Elemental ratios were highest in the gyre, but approached Redfield proportions northwards. As Prochlorococcus dominated the phytoplankton community, biodiversity changes could not explain the elemental variation. Instead, our data supports the nutrient supply hypothesis. Finally, gyre dissolved iron concentrations suggest extensive iron stress, leading to depressed ratios compared to other gyres. We propose a model whereby differences in iron supply and N2-fixation influence C:N:P levels across ocean gyres.


Asunto(s)
Carbono/química , Hierro/química , Nitrógeno/química , Fósforo/química , Agua de Mar/química , Biodiversidad , Carbono/metabolismo , Océano Índico , Hierro/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/fisiología , Nutrientes/química , Nutrientes/metabolismo , Fósforo/metabolismo , Fitoplancton/clasificación , Fitoplancton/metabolismo , Prochlorococcus/metabolismo , Agua de Mar/microbiología , Movimientos del Agua
13.
Environ Microbiol ; 20(8): 3069-3082, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30043484

RESUMEN

Frequent blooms of phytoplankton occur in coastal upwelling zones creating hotspots of biological productivity in the ocean. As cold, nutrient-rich water is brought up to sunlit layers from depth, phytoplankton are also transported upwards to seed surface blooms that are often dominated by diatoms. The physiological response of phytoplankton to this process, commonly referred to as shift-up, is characterized by increases in nitrate assimilation and rapid growth rates. To examine the molecular underpinnings behind this phenomenon, metatranscriptomics was applied to a simulated upwelling experiment using natural phytoplankton communities from the California Upwelling Zone. An increase in diatom growth following 5 days of incubation was attributed to the genera Chaetoceros and Pseudo-nitzschia. Here, we show that certain bloom-forming diatoms exhibit a distinct transcriptional response that coordinates shift-up where diatoms exhibited the greatest transcriptional change following upwelling; however, comparison of co-expressed genes exposed overrepresentation of distinct sets within each of the dominant phytoplankton groups. The analysis revealed that diatoms frontload genes involved in nitrogen assimilation likely in order to outcompete other groups for available nitrogen during upwelling events. We speculate that the evolutionary success of diatoms may be due, in part, to this proactive response to frequently encountered changes in their environment.


Asunto(s)
Diatomeas/clasificación , Diatomeas/genética , Fitoplancton/clasificación , Fitoplancton/genética , Evolución Biológica , California , Diatomeas/metabolismo , Ecosistema , Expresión Génica , Fitoplancton/metabolismo
14.
J Phycol ; 53(4): 746-761, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28457002

RESUMEN

Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4 , concentration between 1 and 120 µM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2-24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4 ] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4 ] from 1 to 500 µM with the rate of Si acquisition increasing abruptly between 80 and 100 µM Si(OH)4 . Although these linear responses imply some form of diffusion-mediated transport, Si uptake rates at low Si (~1 µM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid-solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus.


Asunto(s)
Ácido Silícico/metabolismo , Silicio/metabolismo , Synechococcus/metabolismo , Synechococcus/crecimiento & desarrollo
15.
J Phycol ; 53(4): 820-832, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28394444

RESUMEN

Iron availability limits primary productivity in large areas of the world's oceans. Ascertaining the iron status of phytoplankton is essential for understanding the factors regulating their growth and ecology. We developed an incubation-independent, molecular-based approach to assess the iron nutritional status of specific members of the diatom community, initially focusing on the ecologically important pennate diatom Pseudo-nitzschia. Through a comparative transcriptomic approach, we identified two genes that track the iron status of Pseudo-nitzschia with high fidelity. The first gene, ferritin (FTN), encodes for the highly specialized iron storage protein induced under iron-replete conditions. The second gene, ISIP2a, encodes an iron-concentrating protein induced under iron-limiting conditions. In the oceanic diatom Pseudo-nitzschia granii (Hasle) Hasle, transcript abundance of these genes directly relates to changes in iron availability, with increased FTN transcript abundance under iron-replete conditions and increased ISIP2a transcript abundance under iron-limiting conditions. The resulting ISIP2a:FTN transcript ratio reflects the iron status of cells, where a high ratio indicates iron limitation. Field samples collected from iron grow-out microcosm experiments conducted in low iron waters of the Gulf of Alaska and variable iron waters in the California upwelling zone verify the validity of our proposed Pseudo-nitzschia Iron Limitation Index, which can be used to ascertain in situ iron status and further developed for other ecologically important diatoms.


Asunto(s)
Proteínas Algáceas/genética , Diatomeas/genética , Diatomeas/metabolismo , Ferritinas/genética , Hierro/metabolismo , Proteínas Algáceas/metabolismo , Ferritinas/metabolismo , Perfilación de la Expresión Génica , Fitoplancton/genética , Fitoplancton/metabolismo
16.
J Plankton Res ; 38(2): 256-270, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27275029

RESUMEN

Mesozooplankton production in high-nutrient low-chlorophyll regions of the ocean may be reduced if the trace element concentrations in their food are insufficient to meet growth and metabolic demands. We used elemental microanalysis (SXRF) of single-celled plankton to determine their trace metal contents during a series of semi-Lagrangian drift studies in an HNLC upwelling region, the Costa Rica Dome (CRD). Cells from the surface mixed layer had lower Fe:S but higher Zn:S and Ni:S than those from the subsurface chlorophyll maximum at 22-30 m. Diatom Fe:S values were typically 3-fold higher than those in flagellated cells. The ratios of Zn:C in flagellates and diatoms were generally similar to each other, and to co-occurring mesozooplankton. Estimated Fe:C ratios in flagellates were lower than those in co-occurring mesozooplankton, sometimes by more than 3-fold. In contrast, Fe:C in diatoms was typically similar to that in zooplankton. RNA:DNA ratios in the CRD were low compared with other regions, and were related to total autotrophic biomass and weakly to the discrepancy between Zn:C in flagellated cells and mesozooplankton tissues. Mesozooplankton may have been affected by the trace element content of their food, even though trace metal limitation of phytoplankton was modest at best.

17.
J Plankton Res ; 38(2): 331-347, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27275034

RESUMEN

Mineral limitation of mesozooplankton production is possible in waters with low trace metal availability. As a step toward estimating mesozooplankton Fe and Zn requirements under such conditions, we measured tissue concentrations of major and trace nutrient elements within size-fractioned zooplankton samples collected in and around the Costa Rica Upwelling Dome, a region where phytoplankton growth may be co-limited by Zn and Fe. The geometric mean C, N, P contents were 27, 5.6 and 0.21 mmol gdw-1, respectively. The values for Fe and Zn were 1230 and 498 nmol gdw-1, respectively, which are low compared with previous measurements. Migrant zooplankton caused C and P contents of the 2-5 mm fraction to increase at night relative to the day while the Fe and Zn contents decreased. Fe content increased with size while Zn content decreased with size. Fe content was strongly correlated to concentrations of two lithogenic tracers, Al and Ti. We estimate minimum Fe:C ratios in large migrant and resident mixed layer zooplankton to be 15 and 60 µmol mol-1, respectively. The ratio of Zn:C ranged from 11 µmol mol-1 for the 0.2-0.5 mm size fraction to 33 µmol mol-1 for the 2-5 mm size fraction.

18.
Metallomics ; 6(6): 1141-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24787980

RESUMEN

The nonheterocystous cyanobacterium Trichodesmium fixes C and N concurrently during the light period in tropical and subtropical oceans. Synchrotron mapping of Fe, P and S in trichomes of Trichodesmium erythraeum Erhenberg IMS 101 (CCMP 1985) collected during exponential and senescent growth revealed that 16% of trichomes contained sections of up to 25 cells with ca. 2-fold elevated Fe and S but ca. 2-fold lowered P in comparison to neighboring trichome sections. The correlation between Fe and S in these trichomes was moderate to strongly positive (R > 0.35), while the correlation between Fe and P was moderate to strongly negative (R < 0.35). Higher Fe in theses trichome sections might indicate the presence of nitrogenase. Increase in S in conjunction with Fe is likely driven by other S-containing compounds in addition to Fe-S proteins. Furthermore, the concurrent increase in S and decrease in P in these Fe-rich trichome sections might indicate a switch from P- to S-containing compounds. Diurnal changes and growth phase-related differences in the correlation between Fe and P both point to Trichodesmium's ability to re-allocate elements depending on their physiological need. Concurrent P depletion and Fe and S enrichment in trichome sections is a strong indication that Trichodesmium is able to develop special trichome regions consisting of multiple cells with a unique chemical composition. Whether these cells are uniquely dedicated to N2-fixation (i.e., diazocytes) is an open question.


Asunto(s)
Cianobacterias/metabolismo , Hierro/análisis , Fósforo/análisis , Azufre/análisis , Cianobacterias/química , Cianobacterias/crecimiento & desarrollo , Cianobacterias/ultraestructura , Hierro/metabolismo , Fijación del Nitrógeno , Fósforo/metabolismo , Azufre/metabolismo
19.
Nat Commun ; 4: 1981, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23749035

RESUMEN

Iron has a key role in controlling biological production in the Southern Ocean, yet the mechanisms regulating iron availability in this and other ocean regions are not completely understood. Here, based on analysis of living phytoplankton in the coastal seas of West Antarctica, we present a new pathway for iron removal from marine systems involving structural incorporation of reduced, organic iron into biogenic silica. Export of iron incorporated into biogenic silica may represent a substantial unaccounted loss of iron from marine systems. For example, in the Ross Sea, burial of iron incorporated into biogenic silica is conservatively estimated as 11 µmol m⁻² per year, which is in the same range as the major bioavailable iron inputs to this region. As a major sink of bioavailable iron, incorporation of iron into biogenic silica may shift microbial population structure towards taxa with relatively lower iron requirements, and may reduce ecosystem productivity and associated carbon sequestration.


Asunto(s)
Hierro/aislamiento & purificación , Océanos y Mares , Fitoplancton/metabolismo , Dióxido de Silicio/metabolismo , Regiones Antárticas , Silicio , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
20.
Appl Environ Microbiol ; 79(14): 4359-68, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666327

RESUMEN

There can be significant intraspecific individual-level heterogeneity in the intracellular P of phytoplankton, which can affect the population-level growth rate. Several mechanisms can create this heterogeneity, including phenotypic variability in various physiological functions (e.g., nutrient uptake rate). Here, we use modeling to explore the contribution of various mechanisms to the heterogeneity in phytoplankton grown in a laboratory culture. An agent-based model simulates individual cells and their intracellular P. Heterogeneity is introduced by randomizing parameters (e.g., maximum uptake rate) of daughter cells at division. The model was calibrated to observations of the P quota of individual cells of the centric diatom Thalassiosira pseudonana, which were obtained using synchrotron X-ray fluorescence (SXRF). A number of simulations, with individual mechanisms of heterogeneity turned off, then were performed. Comparison of the coefficient of variation (CV) of these and the baseline simulation (i.e., all mechanisms turned on) provides an estimate of the relative contribution of these mechanisms. The results show that the mechanism with the largest contribution to variability is the parameter characterizing the maximum intracellular P, which, when removed, results in a CV of 0.21 compared to a CV of 0.37 with all mechanisms turned on. This suggests that nutrient/element storage capabilities/mechanisms are important determinants of intrapopulation heterogeneity.


Asunto(s)
Diatomeas/metabolismo , Modelos Biológicos , Fósforo/metabolismo , Fitoplancton/metabolismo , Simulación por Computador , Diatomeas/citología , Fitoplancton/citología , Crecimiento Demográfico , Espectrometría por Rayos X , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...